582 research outputs found

    Chirality-Dependent Growth Rate of Carbon Nanotubes - A Theoretical Study

    Full text link
    We consider geometric constraints for the addition of carbon atoms to the rim of a growing nanotube. The growth of a tube proceeds through the conversion of dangling bonds from armchair to zigzag and vice versa. We find that the growth rate depends on the rim structure (chirality), the energy barriers for dangling bond conversion, and the growth temperature. A calculated chirality distribution derived from this minimalistic theory shows surprisingly good agreement with experiment. Our ideas imply that the chirality distribution of carbon nanotubes can be influenced by external parameters.Comment: 5 pages, 3 figures, 4 formulas, 1 table, approx 4000 word

    Exciton resonances quench the photoluminescence of zigzag carbon nanotubes

    Full text link
    We show that the photoluminescence intensity of single-walled carbon nanotubes is much stronger in tubes with large chiral angles - armchair tubes - because exciton resonances make the luminescence of zigzag tubes intrinsically weak. This exciton-exciton resonance depends on the electronic structure of the tubes and is found more often in nanotubes of the +1 family. Armchair tubes do not necessarily grow preferentially with present growth techniques; they just have stronger luminescence. Our analysis allows to normalize photoluminescence intensities and find the abundance of nanotube chiralities in macroscopic samples.Comment: 4 pages and 2 supplementary pages; 6 figure

    Modeling Surface-Enhanced Spectroscopy With Perturbation Theory

    Get PDF
    Theoretical modeling of surface-enhanced Raman scattering (SERS) is of central importance for unraveling the interplay of underlying processes and a predictive design of SERS substrates. In this work we model the plasmonic enhancement mechanism of SERS with perturbation theory. We consider the excitation of plasmonic modes as an integral part of the Raman process and model SERS as higher-order Raman scattering. Additional resonances appear in the Raman cross section which correspond to the excitation of plasmons at the wavelengths of the incident and the Raman-scattered light. The analytic expression for the Raman cross section can be used to explain the outcome of resonance Raman measurements on SERS analytes as we demonstrate by comparison to experimental data. We also implement the theory to calculate the optical absorption cross section of plasmonic nanoparticles. From a comparison to experimental cross sections, we show that the coupling matrix elements need to be renormalized by a factor that accounts for the depolarization by the bound electrons and interband transitions in order to obtain the correct magnitude. With model calculations we demonstrate that interference of different scattering channels is key to understand the excitation energy dependence of the SERS enhancement for enhancement factors below 103

    Understanding the negative thermal expansion in planar graphite–metal composites

    Get PDF
    The addition of graphitic fibers and flakes as fillers is commonly used to control the thermal expansion of metals. Sintered metal matrix composites with a planar distribution of graphite flakes show a low or negative thermal expansion coefficient perpendicular to the orientation plane of the graphite (z-CTE). Since the metal matrix has a positive isotropic expansion and graphite has a high z-CTE, this effect cannot be explained by a simple model of stapled metal–graphite layers. Instead, a mechanical interaction between graphite and matrix must be considered. With neutron scattering measurements, we show that there is little or no strain of the graphite flakes caused by the matrix, which can be explained by the high modulus of graphite. Instead, we suggest that a macroscopic crumpling of the flakes is responsible for the low z-CTE of the composite. The crumpled flakes are thicker at low temperature and get stretched and flattened by the expanding matrix at high temperature, explaining the reduction in the thermal expansion across the orientation plane

    Probing LO phonons of graphene under tension via the 2D′ Raman mode

    Get PDF
    We use ab initio simulations and perturbation theory to study the 2D′ Raman mode of graphene subject to biaxial and uniaxial strains up to 2%. We demonstrate that 2D′ Raman measurements, as a function of polarization and laser energy EL, can probe the LO phonons of graphene with arbitrary radial and angular extent around Γ. The 2D′ profile is highly sensitive to uniaxial strain and depends on both polarization and strain orientation. The Grüneisen parameter γ2D′≈1.71 has a mild dependency on the laser energy EL, and is found to be in good agreement with experiments and comparable in value to γG. The shear deformation potential β2D′ depends strongly on the polarization and strain orientation, becoming negative when the polarizer and analyzer are perpendicular to each other. Finally, we describe a robust method to determine the uniaxial strain by relying solely on polarized measurements of the 2D′ mode

    Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles

    Get PDF
    We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices

    Plasmonic nanolaser based on a single oligomer

    Get PDF
    We investigate the effect of manipulating the laser quality factor and the spectral properties of the gain medium on an oligomer-based plasmonic nanolaser. We develop different designs of the oligomer resonators, decreasing the lasing threshold and increasing the mode lifetime to improve the lasing efficiency. Based on the designs we are able to decrease the lasing threshold by a factor of ten. We discuss and show numerically the influence of the oligomer geometry, the lasing mode oscillation lifetime, and the photoluminescence peak linewidth of the gain medium on the lasing efficiency of the oligomer based plasmonic nanolaser

    Symmetry-derived selection rules for plasmon-enhanced Raman scattering

    Get PDF
    We show how to obtain the symmetry-imposed selection rules for plasmonic enhancement in surface- (SERS) and tip-enhanced Raman scattering (TERS). Plasmon-enhanced light scattering is described as a higher-order Raman process, which introduces a series of Hamiltonians representing the interaction between light, plasmons, electrons, and phonons. Using group theory, we derive the active representations for point group symmetries of exemplary plasmonic nanostructures. The phonon representations that are enhanced by SERS and TERS are then found as induced representations for the symmetry group of the molecule or another Raman probe. The selection rules are discussed for graphene that is coupled to a nanodisk dimer as an example for SERS and coupled to a tip as a TERS example. The phonon eigenmodes that are enhanced depend on the symmetry breaking when combining the plasmonic structures with graphene. We show that the most prominent optical phonon modes (E2g and A1g) are allowed in all scattering configurations when using a nanodimer as a plasmonic hotspot. We predict the activation of the silent B2g as well as infrared-active A2u and E1u modes in SERS for crossed configurations of the incoming and scattered light. There is a systematic difference between spatially coherent and incoherent plasmon-enhanced Raman scattering, which is responsible for a dependence of TERS on the phonon coherence length
    • …
    corecore